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Achim Rettinger & Nils Schwager

September 24, 2025

1 Introduction

Building aTWONconsists of several buildingblocks. The conceptualmodel hasbeendescribed inDeliv-

erable 2.1 (Section 3). There, in Section 1.5 it is alsomentioned that realism is one of the quality criteria

when building TWONs. This deliverable builds on D2.1 and focuses on calibrating TWONs to optimize

their realism.

1.1 Calibrating TWONs

A useful structuring of the components for building TWONs has turned out to be the separation of

network model (e.g., who does see messages from whom and when, how are messages moderated

(ranked, filtered, annotated,…), and what features are offered to a user to interact with content (liking,

forwarding, commenting,…) from the usermodel (how and when does a user interact with content or

create newmessages). Although both components are highly dependent on each other, this separation

has proven to make the modeling process more manageable. We followed this insight in our work for

this deliverable.

On both levels, calibration is possible. By calibration, we refer to the process ofmaking a social sim-

ulation more similar to a real-world online social network, not only by estimating the network mecha-

nisms of an existing OSN, but also by trying to mimic authentic user behavior. To this end, researchers

consider empirical data of various types to support models in terms of calibration and validation. This

way, they attempt to establish „ecological validity“ or „empirical realism“.

1.2 Changes to this deliverable compared to the original TWON proposal

Most social simulations, for instance on opinion formation, are based on formal models, mathemati-

cally typically represented in the form of stochastic processes. Since the rise of machine learning in

8



general and Large Language Models (LLMs) in particular in 2022/2023, new approaches have become

available. Where formalmodels are deliberately designedbyhumanexpertswith fewcarefully selected

parameters, machine-learning models have millions of parameters without any predefined human-

ascribedmeaning. There “meaning” is automatically assigned bymachine learningmethods that opti-

mize the values of the parameters from large numbers of real-world observations (for instance, content

moderation algorithms or posting behavior of users). Such machine-learned models remain mostly a

black box for human analysis. However, this approach is far more powerful in replicating human com-

munication than formal models and thus has great potential to exhibit greater empirical realism.

The TWON consortium decided very early on in the project to exploit those new opportunities and

focus the research in WP3 on the calibration of user behavior and resort to traditional modeling meth-

ods when it comes to network mechanics.

Deliverable D-3.3 September 24, 2025 9



1.3 Overview of this deliverable

This document is separated into two parts: First, the part about calibrating andmimicking user behav-

ior. This part has become the focus of thework inWP3. Second, the calibration of platforms. To provide

an overview of the tangible results in WP3, here is a list of software/resources that were developed in

relation to this deliverable.

Name Short Description Reference

TWONy-Macro

Interactive macro-simulation
demonstrating how network topology
and algorithmic choices affect opinion
formation in online communities.
Features 3D network visualization with
virtual agents, implements
Deffuant-Weisbuch Bounded Confidence
Model, and allows experimentation with
different neighbor selection strategies
(random, similarity-based,
positivity/negativity bias). Includes
real-time sentiment tracking,
configurable network parameters, and
comparative algorithm analysis.

https://github.com/simon-
muenker/TWONy-macro

TWONy-Micro

Interactive micro-simulation
demonstrating how social media
algorithms affect online discourse
sentiment. Features LLM-powered
virtual agents with configurable
personas creating posts and replies,
real-time sentiment analysis, and
comparison between chronological vs.
sentiment-based ranking algorithms.
Includes user participation capability,
thread-level emotional impact scoring,
and data export/import functionality for
simulation results and agent
configurations.

https://github.com/simon-
muenker/TWONy-micro
& Münker and Rettinger
(2025)

TWON-LSS

Modular, scalable framework for
large-scale social media interaction
simulation with API-driven architecture.
Features configurable network
mechanics, LLM-powered agent
modeling, and discourse evaluation
pipelines. Supports multiple simulation
types (BCM, TWON-base), content
ranking algorithms, and automated
analysis. Generates structured output
files (network.json, feed.json,
individuals.json) for research analysis.
Built with NetworkX-based social graphs
and extensible component interfaces.

https://github.com/cl-
trier/TWON-LSS
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TWON-Agents

Dual-pipeline framework for training and
evaluating AI agents in social media
contexts, featuring neural networks for
predicting user engagement likelihood
based on historical interactions and
supervised fine-tuning for generating
contextually appropriate posts and
replies. Implements BERT-based text
encoding, LoRA adapter training,
comprehensive evaluation metrics
(BLEU, TweetEval correlation, semantic
distance), and FastAPI deployment
interface with support for political
personamodeling and responsible AI
agent development.

https://github.com/cl-
trier/TWON-Agents

Table 1: Software developed for Calibrating Agents and Platforms

Below is a list of publications that describe experimental results about howandwhatwas calibrated

and with which result. This is also detailed in the remainder of this deliverable.

Name Description Section / Link / Reference

Don’t Trust Generative
Agents to Mimic
Communication on Social
Networks Unless You
Benchmarked their
Empirical Realism

Calibrated LLM agents for X/Twitter user
behavior simulation using fine-tuned
Llama-3.2-3B vs in-context prompting.
Validated empirical realism via BLEU
scores, n-gram precision, embedding
distances, and TweetEval correlations.
Results: Fine-tuning significantly
outperformed prompting (English BLEU:
0.239 vs 0.019 for replies); English
models substantially better than
German; context-specific validation
essential.

Münker et al. (2025)

Beyond Prompted
Personas: Data-Driven User
Modeling from Authentic
Interactions

Developed Behavior-Based User
Modeling by fine-tuning
Phi-4-mini-instruct on X conversation
histories for next-reply prediction,
replacing prompted personas.
Introduced Semantic Similarity
Completion Curation using GTE-Qwen2
embeddings to rank synthetic
completions by proximity to human
references. Two-phase training: SFT on
authentic data, then preference
optimization on synthetic completions.
Results: Fine-tuning outperformed
prompted baseline across embedding
distance, ROUGE-1, and perplexity;
synthetic completion training exceeded
authentic data training

Currently under review

Table 2: Publications for Calibrating Agents and Platforms
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2 Calibrating Users

2.1 Aligning LLMs with Human Behavior

Current approaches for aligning LLMs with human behavior rely on prompting, supervised fine-tuning,

and preference optimization methods.

2.1.1 Prompting

The predominant approach for aligning LLMs involves prompting - instructing models to assume per-

sonas based on characteristic descriptions (Larooij and Törnberg, 2025). Such prompts usually consist

of a description of the persona based on typical sociodemographic factors (age, gender, income...) and

can additionally incorporate previous decisions or description of the environment.

Simple implementations use prompt templates which are filled using randomly selected traits (Liu

et al., 2024), while more complex implementations infer labels such as gender or occupation from real

social media profiles using LLM and human annotation or even training a dedicated profiler (Gao et al.,

2023; Zhang et al., 2025). Pushing for data-driven personas, Li et al. (2024) train a soft-promptingmodel

that transforms personas into embeddings, which are then combined with textual prompts as input to

the LLM.

Prompting-based approaches suffer from four fundamental limitations that compromise their va-

lidity for rigorous social science applications. First, LLMs face significant causal inference problems.

The unconfoundedness problemoccurswhen treatment variations in experiments affect variables that

should remain constant, violating assumptions required for valid causal inference. When researchers

attempt to address this by controlling for covariates in prompts, they create a new issue — making

these variables artificially salient and introducing ”focalism” that threatens ecological validity (Gui and

Toubia, 2023). For instance, prompting an LLM with “You are a 45-year-old college-educated Demo-

crat who follows political news daily. How would you respond to this post about immigration policy?”

transforms what might be a reflexive reaction into a deliberative process where the agent consciously

weighseachdemographic factor. Real socialmediausers rarely inventory their educationalbackground

or news consumption habits before crafting a political tweet. They respond based on immediate emo-

tional reactions and whichever aspect of their identity feels most salient in that moment.

Second, LLMs struggle with representation accuracy, often reproducing problematic stereotypes

rather than authentic representations of social groups. Thesemodels exhibit both social bias (discrim-

ination against certain groups) and selection bias (reflecting the choice of texts in their training corpus)

(Gallegos et al., 2024). Li et al. (2024) find that ”a simple group definition based on demographic fea-
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turesmight not be sufficient to represent the nuances of the underlying different social groups present

in agivenpopulation.”Demographic andcultural alignmentpresents significant challenges, as rigorous

persona alignment would require calibrating against specific individuals and their actions.

Third, knowledge and capabilitymisalignment undermines simulation realism. LLMs display ”over-

whelming capabilities” due to training on vast web knowledge exceeding what average individuals

might know. Models like ChatGPT provide ”hyper-accurate” estimates in psychology experiments that

don’t reflect genuine human behavior, and they show limited capabilities for simulating uncommon or

newly emerging roles (Larooij and Törnberg, 2025). Empirical comparisons show that LLM responses

are typically longer, more polite, articulate, and respectful than human-generated content, exhibiting

heightened agreeableness that fails to capture the full range of human communication styles (Park

et al., 2023; Weng et al., 2025; Chuang et al., 2024; Muñoz-Ortiz et al., 2024).

Fourth, psychological realism remains elusive. Existing LLMs may not adequately model human

cognitive psychology, leading to a lack of self-awareness in simulated personas. Their alignment with

unifiedhumanvaluesmakes itdifficult to simulatediversepersonaswithdifferentvaluesystems (Chuang

et al., 2024; Fischer, 2023; Wang et al., 2024; Münker, 2025a,b).

2.1.2 Supervised Fine-Tuning

Supervised fine-tuning exposes foundation models to domain-specific prompt-completion pairs, opti-

mizing model parameters to generate contextually appropriate responses for the target domain. This

approach requiresauthenticbehavioraldata—dialogues, socialmedia interactions, or survey responses

— often enriched with contextual information such as user profiles, interaction histories, or environ-

mental factors.

Implementation strategies vary by application domain. For dialoguemodeling, researchers convert

human-to-human conversations into prompt-completion pairs where the LLM assumes one speaker’s

role (Alghisi et al., 2024). Survey impersonation incorporates relevant socio-demographic details into

prompts. When targeting distributional outputs rather than single responses, implementations replace

standardcross-entropy losswithdistribution-awareobjectives (Suhetal., 2025). Luetal. (2025)demon-

strate significant improvements in human-like web browsing behavior through fine-tuning on authen-

tic online shopping data combined with synthesized reasoning traces. For social media applications,

Vendetti et al. (2025) compare fine-tuning approaches on comment-reply pairs with and without addi-

tional contextual information.

However, fine-tuning inherits biases present in training data. Models exhibit systematic political bi-

ases (Bangetal., 2024;Rettenbergeretal., 2025) stemming fromselectionbias (over-orunder-representation
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of certain data) and social bias (human biases embedded in content) (Gallegos et al., 2024).

2.1.3 Preference Optimization

Preference optimization refines model behavior by learning from comparative examples rather than

absolute targets. This paradigm is considered a lightweight alternative to reward model approaches

— where previously trained models calculate scalar rewards for proximal policy optimization (Ouyang

et al., 2022) — and relies on direct preference methods that optimize against positive and negative ex-

ample pairs curated based on human or LLM judgments (Rafailov et al., 2023).

Practical implementations typically generate contrastive completions for preference pair creation.

Agiza et al. (2024) create politically contrasting completions using foundation models, then apply se-

quential training: initial supervised fine-tuning fordomainadaptation followedbypreferenceoptimiza-

tion using these curated pairs to ensure consistent ideological alignment.

A critical limitationof preferenceoptimization is calibration curve flattening,which increasesmodel

confidenceeven inuncertain scenarios (Zhangetal., 2024; Lengetal., 2024). For social simulationappli-

cations, this creates problematic distortions where models express unwarranted certainty, potentially

misrepresenting the underlying uncertainty distributions establishedduring initial domain adaptation.

2.2 Methods

Implementing the concept of behavioral alignment, this section operationalizes our methodological

shift from deductive persona specification to inductive behavioral pattern extraction. We propose two

core components for this approach: first, transforming behavioral prediction into LLMs’ native prompt-

completion format through Behavior-Based User Modeling, and second, curating synthetic training

databyembeddingdistance tohumanreferences tooptimize for semanticalignment rather thansurface-

level pattern replication. Finally, we establish metrics for measuring alignment and assessing the va-

lidity of resulting behavioral patterns.

2.2.1 Behavior-Based User Modeling

We propose Behavior-Based User Modeling as a framework that reformulates persona simulation as

data-driven behavioral prediction. The general framework can be formalized as:

f(H,C) → a (1)

Deliverable D-3.3 September 24, 2025 14



System Prompt

Conversation 1 - c1

User’s Reply 1 - r1

Conversation 2 - c2

User’s Reply 2 - r2

Conversation n - cn

User’s Reply n - rn

Input Generated Response

Conversation - Cn+1

Synthetic Reply

Figure 1: Behavior-Based User Modeling - The model is trained on predicting reply rn+1 given n pre-
vious observed conversation-reply pairs {(c1, r1), (c2, r2), . . . , (cn, rn)} and conversation cn+1 from a
real-world user’s social media history. This approach enables data-driven alignment with behavioral
patterns without requiring explicit persona descriptions. System prompt: “You are a social media user
responding to conversations. Keep your replies consistent with your previous writing style and the per-
spectives you have expressed earlier.”

whereH = (c1, a1), (c2, a2),…, (cn, an) represents the history of context-action pairs, C denotes the

current context, and a is the predicted action. In practice, these historical context-action pairs are

passedaspartof theprompt in the formofpastprompt-completionexamples, enabling themodel

to extract behavioral patterns through in-context learning. This formulation positions user model-

ing as abehavioral continuation task,where themodel learns to identify relevant patterns fromdemon-

strations and generalize them to novel contexts. The approach builds on classical behavioral modeling

methodologies (Guozhen et al., 2024), adapting these established principles to the capabilities ofmod-

ern LLMs.

As proof-of-concept we create aNext Reply Prediction task. The function becomes:

f({(c1, r1), (c2, r2), . . . , (cn, rn)}, cn+1) → rn+1 (2)

where the model predicts reply rn+1 given n previous authentic conversation-reply pairs and conver-
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Phase 1 Phase 2
Data

(Split 1)

Phi-4-mini-
instruct SFT SFT model

Data
(Split 2)

Candidates

gte-
Qwen2-
1.5B-

instruct

DPO/KTO
BCO/CPO

SFT

Synthetic
Com-

pletions

Figure 2: Two-phase Fine-Tuning Process Phase 1 applies SFT to the base model using the first data
partition. Phase 2 uses the resulting SFT model to generate candidate completions, which are ranked
by embedding distance to ground truth to create completions for secondary fine-tuning on top of the
SFTmodel.

sation cn+1 from a specific user’s social media history (Figure 1). Larooij and Törnberg (2025) refer to

this as “digital human twins” – calibrating LLMs on digital trace data (Lu et al., 2025). This setup comes

with two major strengths: a) it enables self-supervised fine-tuning and data-driven alignment without

persona descriptions and b) it also allows for side-by-side comparisons of human and synthetic replies.

2.2.2 Semantic Similarity Completion Curation

Our approach implements a two-phase fine-tuning process (Figure 2). During the first phase, we fine-

tune the base model using SFT on authentic completions to establish baseline adaptation. Phase 2

leverages this model to generate multiple candidate completions for the second data partition, ranks

thesecandidatesbysemantic similarity toground truth, thenuses themostand least similar candidates

to create a preference dataset for preference optimization (Rafailov et al., 2023; Agiza et al., 2024).

Based on a preparatory analysis of the data, we identified four factors that potentially limit the suc-

cess of fine-tuning on authentic data: first, noise (prevalence of spamand low-quality content), second,

errors (inconsistent grammar and spelling), third, unobservable factors (e.g., the information a user

has consumed that is external to the conversation-reply pairs) and fourth, fundamental unpredictabil-

ity. The latter is the most significant challenge, given only 3-7 past interactions, the model faces both

incomplete information about the user’s full behavioral patterns and the inherent unpredictability of

human communication, creating a vast space of plausible responses, leading to unstable training.

Our approach transforms the optimization objective fromdirect pattern replication to stylistic prox-
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imityand intentmatching. Thecore rationale is thathumanbehavior in complexcommunicativeecosys-

tems cannot be reduced to simple input-output mappings. Instead, we prioritize learning the underly-

ing generative principles that govern discourse production. Thismethod could serve as an implicit reg-

ularizationmechanism, preventing themodel from overfitting to surface-level linguistic patterns while

maintaining the core communicative essence of the human references.

Our implementation generates eight candidate completions per sample using the SFT model with

variable temperature sampling (0.7, 0.9, 1.1, 1.3) across the second data partition. We then employ gte-

Qwen2-1.5B-instruct (Li et al., 2023) to derive semantic embeddings for each candidate, prompting the

embeddingmodel to focus on both stylistic features and discourse function (Prompt 1). These embed-

dings are then used to calculate the similarity to the human reference.

Instruct: retrieve the stylistic features (vocabulary, hashtags,
mentions) and the communicative intention (agreement, disagreement,
question) relative to the original tweet
Query: {reply}

Prompt 1: Embedding Model Query

2.2.3 Metrics

To account for the ongoing critique of the validation of humanbehavior simulation using LLMs, we split

our evaluation methodology into two parts. (1) Following Larooij and Törnberg (2025)’s recommenda-

tion for “validating profile alignment for the individuals being simulated”, i.e., operational validity, we

measure the alignment of predicted and observed replies on a set of previously unseen users. (2) Ad-

dressing further concerns from the literature that stress that LLMs may not adequately model human

cognitive psychology (Fischer, 2023; Chuang et al., 2024) and that LLMs do not capture the full range

of human communication styles (Weng et al., 2025; Muñoz-Ortiz et al., 2024), we develop metrics that

allow us to compare our models with the base model in these domains.

For behavioral alignment, we evaluate our models using the same task as in the fine-tuning but

on a set of completely unseen users, testing whether the models learned generalizable patterns rather

than memorizing examples. This implements validation against human-generated data at the individ-

ual level through objective statistical measures (Larooij and Törnberg, 2025). We conduct 10 indepen-

dent evaluation runs with different random seeds and comparemodels using embedding distance (se-

mantic dimensions), ROUGE-1 (syntactic dimensions), and averaged token-level perplexity relative to

ground truth.
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For behavioral pattern validity, we assess two key aspects. Political Stance Consistency examines

howwell modelsmaintain consistent ideological positioning across topics using 30 randomly sampled

conversationhistorieswith prompts onpolitically charged topics. We evaluate responses using an LLM-

Judge based on Llama 3.1 70B (Grattafiori et al., 2024) and calculate Cronbach’s Alpha (Cronbach, 1951)

tomeasure internal consistency. Offensiveness Correlation analyzes the correlation between offensive

content in conversation histories and model-generated responses using the TweetEval classifier (Bar-

bieri et al., 2020), calculating Pearson correlation coefficients (Pearson and Galton, 1895) to quantify

each model’s ability to reproduce varying levels of sensitive content typically suppressed during rein-

forcement learning.

2.3 Experiments

We conduct experiments to validate Behavior-Based User Modeling and Semantic Similarity Comple-

tion Curation within the TWON framework for creating digital twins of online social networks. Our ex-

perimental design specifically addresses the calibration challenges identified in WP3: moving beyond

traditional mathematical models to leverage LLM capabilities while improving the empirical realism of

LLM-based approaches.

Our dataset consists of 7.8 million tweets from 34,720 users collected up to August 2023. From

this data, we reconstruct conversation threads by identifying replies and tracing them back to original

tweets, creating authentic conversation-reply pairs where users respond to ongoing discussions.

Our experimental setup employs Microsoft’s Phi-4-mini-instruct (3.8B parameters) as the founda-

tion model, selected for its superior performance among models under 7B parameters. We test three

demonstration configurations (3, 5, and 7 previous conversations) to understand how the quantity of

behavioral examples affects prediction quality. Each configuration uses a sliding-window approach to

maximize training efficiency - for instance, with 3-shot learning, conversations 1-3 serve as demonstra-

tions for predicting conversation 4, then conversations 2-4 for predicting conversation 5, and so on.

Thedataset is carefully split using auser-basedapproach rather than randomsplitting. Webinusers

by conversation frequency and allocate 15% from each activity level to the test set. This methodol-

ogy ensures the model learns generalizable discourse patterns rather than memorizing user-specific

idiosyncrasies, directly testing the model’s ability to extract behavioral patterns from unseen users.

Our two-phase fine-tuning process represents the core technical innovation. Phase 1 applies super-

vised fine-tuning (SFT) on authentic conversation-reply pairs to establish baseline adaptation to social

media discourse. Phase 2 leverages this adapted model to generate multiple candidate completions

(using temperature sampling from 0.7 to 1.3), which are then ranked by semantic similarity to ground

Deliverable D-3.3 September 24, 2025 18



truth using gte-Qwen2-1.5B-instruct embeddings. The most and least similar candidates form prefer-

ence pairs for preference optimization.

Evaluation employs multiple metrics to capture different aspects of behavioral alignment. Embed-

ding distance measures semantic alignment between generated and actual responses, ROUGE-1 cap-

tures lexical similarity and vocabulary adoption, while perplexity assesses the model’s internal align-

ment with human discourse patterns. Beyond these alignment metrics, we develop two validity mea-

sures: offensive content correlation (using TweetEval classifier) to verify preservationof authentic com-

munication styles, and political stance consistency (using Llama 3.1 70B as judge) to assess ideological

coherence across topics. Extensive implementation details are provided in Appendix A.

2.4 Results

This results section presents our key findings. The figures reported correspond to the 5-shot configura-

tion (Table 3); full results and additional splits are reported in Appendix B.

Approach Embedding ROUGE-1 Perplexity Offensive Ideological
Distance Correlation Consistency

Base Model 0.4767 (± 0.0030) 0.1373 (± 0.0011) 7.9e14 0.5126 0.6374

Initial Fine-tuning on Authentic Completions
SFT 0.3895 (± 0.0031) 0.1996 (± 0.0028) 14.3864 0.5617 0.6735

Fine-tuning on Synthetic Completions
SFT+BCO 0.3770 (± 0.0031) 0.2005 (± 0.0023) 14.3925 0.5488 0.4939
SFT+CPO 0.3782 (± 0.0038) 0.1970 (± 0.0027) 14.4689 0.5636 0.7802
SFT+DPO 0.3731 (± 0.0031) 0.1956 (± 0.0021) 14.4338 0.5555 0.7108
SFT+KTO 0.3763 (± 0.0039) 0.2006 (± 0.0025) 18.5141 0.5814 0.6920
SFT+SFT 0.3756 (± 0.0041) 0.2032 (± 0.0023) 16.0201 0.5817 0.7153

Fine-tuning on Authentic Completions (control)
SFT+SFT 0.3795 (± 0.0034) 0.1977 (± 0.0014) 13.9663 0.5838 0.6397

Table 3: Performance Comparison across Fine-TuningMethods (5-Shot Configuration). EmbeddingDis-
tance (↓,n=1000, 10 runs), ROUGE-1 (↑,n=1000, 10 runs), Perplexity (↓,n=1000), OffensiveCorrelation
(Pearson’s r, ↑, n = 1000, all methods significant), Ideological Consistency (Cronbach’s α, ↑). Best per-
formance is highlighted.

Our experiments demonstrate substantial improvements through fine-tuning for social media dis-

course modeling. The base model, when prompted with conversation history alone, achieves embed-

ding distances of 0.45-0.52 and ROUGE-1 scores of 0.12-0.14. In contrast, fine-tunedmodels improve to

embedding distances of 0.37-0.39 (25% improvement) and ROUGE-1 scores of 0.19-0.20 (50% improve-

ment). Most dramatically, base model perplexity ranges from 4.04e12 to 5e15, indicating fundamental

prediction failures, while fine-tunedmodels achieve reasonable perplexity values of 13-15.
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Performance scales with demonstration quantity, validating that models successfully identify rel-

evant discourse features from behavioral examples. The base model’s embedding distance decreases

from 0.52 at 3-shot to 0.45 at 7-shot, demonstrating that authentic interaction histories contain learn-

able behavioral signals. This scaling pattern holds across all training paradigms, confirming our hy-

pothesis that Behavior-Based User Modeling can extract communicative patterns from limited demon-

strations without explicit persona descriptions.

Fine-tuning on synthetic completions consistently outperforms fine-tuning on authentic comple-

tions alone. Models trained with Semantic Similarity Completion Curation show 3-5% improvement in

embedding distance compared to those trained only on human data. DPO achieves optimal semantic

alignment (embedding distances of 0.3731 in 5-shot configuration), while surprisingly, sequential SFT

on synthetic completions demonstrates the strongest ROUGE-1 performance (0.2032), suggesting that

direct optimization on carefully selected synthetic examples can match or exceed preference-based

methods for lexical alignment.

Critically, our approach preserves authentic discourse characteristics typically suppressed in stan-

dard LLMs. Offensive content correlation analysis shows all training paradigms maintain the relation-

ship between offensive content in conversation histories andmodel responses (r = 0.51-0.58, all statis-

tically significant). Political stance consistency measurements reveal that fine-tuned models achieve

Cronbach’s ɑ values up to 0.78, demonstrating the ability to maintain coherent ideological positioning

across diverse topics - substantially better than the base model’s ɑ = 0.64.

These results establish that data-driven behavioral alignment through fine-tuning on authentic in-

teractions, enhanced by semantic similarity curation, offers a methodologically sound alternative to

prompted personas for social simulations. The approach addresses fundamental validity concerns

about LLM-based social simulationwhile simultaneously improvingperformance across semantic, lexi-

cal, andbehavioral dimensions. Thepreservationof authentic discoursepatterns, includingpotentially

controversial content, suggests our method captures genuine behavioral patterns rather than produc-

ing the sanitized outputs typical of instruction-tuned LLMs.

3 Calibrating Platforms

As described before, the focus of this deliverable is on themachine learning based calibration of users.

Still, this Section outlines how the platformmodel was calibrated for our initial simulations.

Our simulation framework implements a Twitter-like social media platformwith several key design

decisions optimized for large-scale agent interactions. The platform architecture prioritizes computa-
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tional efficiency while maintaining realistic social dynamics, enabling scalable experiments with up to

hundreds of agents.

3.1 Network

We employ NetworkX-based graph structures to model social connections, with our implementation

supporting multiple network generation algorithms for controlled experiments. While Twitter exhibits

strong preferential attachment dynamics with power-law follower distributions that enable ”rich-get-

richer” phenomena, such scale-free properties become statistically meaningless with populations of a

few hundreds of agents.

For our 128-agent experiments, we utilize Watts-Strogatz small-world networks (n = 128, k = 14,

p = 0.05) as apractical compromise thatmaintains clusteringpropertieswhile providing sufficient con-

nectivity for content propagation. This topology better resembles Facebook-like social networks with

relatively uniform degree distributions, acknowledging that true Twitter-scale dynamics require pop-

ulations of tens of thousands to millions of agents where power-law distributions become statistically

significant.

The network design deliberately excludes hierarchical commenting structures found in platforms

like Reddit, instead implementing a flat feed structure similar to Twitter’s timeline. This decision re-

duces computational overhead by eliminating tree-traversal operations while focusing experimental

attention on content ranking mechanisms rather than conversational threading dynamics. Social con-

nections are bidirectional, representing mutual following relationships that determine content visibil-

ity between agents.

3.2 Agent cycle

Each agent follows a structured interaction cycle consisting of content consumption, evaluation, and

generation phases. During each simulation step, agents receive a personalized feed of posts from their

network neighbors, ranked according to the active ranking algorithm. The agent processes each post

through an LLM-powered evaluation system, making binary decisions to read-only or read-and-like

based on content relevance and personal preferences encoded in their persona.

Agent memory management employs a sliding-window approach with configurable length. This

bounded-memory system prevents exponential growth in computational requirements while main-

taining sufficient context for coherent behavior. After consuming their ranked feed, each agent gen-

erates new content using their persona-specific instructions, contributing to the global discourse pool
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for subsequent simulation steps.

The agent architecture integrates LLM APIs for both content evaluation and generation, with robust

error handling and retrymechanisms tomanageAPI limitations. Memorypersistence across simulation

steps enables agents to develop consistent posting patterns and social preferences, while the bounded

window prevents context overflow that could degrade LLM performance.

3.3 Ranking

Our ranking system implementsamodular architecture that supportsmultiple algorithms to study their

impact ondiscoursedynamics. Thebase ranking interface combinesnetwork-level signals (global post-

popularity) with individual-level preferences (personalized relevance) through weighted combination:

scoreu,p = (wnetwork · Snetwork(p) + windividual · Sindividual(u, p)) (1 + ε)

where ε represents a small multiplicative noise to break down ties, and add randomicity to the sys-

tem.

We implement fivedistinct rankingstrategies: RandomRankerprovidesbaselinecomparison through

uniform random scoring; LikeRanker prioritizes posts that accumulatedmore likes; UserLikeRanker

emphasizes content from historically popular users; PersonalizedUserLikeRanker weights posts

based on individual interaction history; and SemanticSimilarityRanker employs cosine similarity

between post embeddings and user posting history.

This ranking diversity enables systematic study of how algorithmic choices influence information

propagation, echo chamber formation, and overall discourse quality in simulated social networks. The

modular design facilitates easy addition of new ranking strategies for future experimental needs.
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Appendix A Methods

Due to limited computational capacity, our experiments are necessarily limited in scope, utilizing a sin-

gle foundation model, embedding model, and dataset. Applying the same rationale, we opt for a uni-

form set of hyperparameters across all experiments, also isolating the effects of our contributions from

implementation-specific confounding.

A.1 Dataset

A.1.1 Discourse Reconstruction and Filtering

Our initial dataset consists of 7,790,741 tweets from 34,720 different users collected up to August 15,

2023. We identified 100 politically active seed users (users who recently engaged with politicians’ con-

tent) andmerged their followee networks to create the user set. For each user, we extracted their max-

imum available tweet history (up to 2,300 tweets per user).

We reconstructall discourses in thedatasetby identifying replieswithno further reply (in thedataset)

and then following the Reply_To_ID tag back to the original tweet. This ensures that there are no dupli-

cates while preserving multi-branched discourse structures.

To ensure validity (primarily in the test set), we opt for a minimal pre-processing principle. How-

ever, we exclude conversations where the final reply contains URLs (typically image links, news refer-

ences, or retweets) to prevent models from learning to generate URL patterns rather than meaningful

discourse content. Additionally, we filter out conversations containing messages with both URLs and

fewer than 10 words, since such cases typically depend on URL content for context that cannot be re-

constructed from the text alone. For training efficiency, we removed length outliers, specifically con-

versations where the final reply length fell below the 10th or above the 90th percentile, as well as any

conversation containing a message exceeding the 90th percentile threshold.

A.1.2 Chronological Demonstration Format

Our approach to prompt construction differs fundamentally from standard user simulation methods,

where handcrafted descriptions of persona characteristics guide the generation. Instead, we group

all conversations by the user who authored the final reply, creating user-specific demonstration sets.

Each prompt consists of a minimal system instruction (”You are a social media user responding to con-

versations. Keep your replies consistent with your previous writing style and the perspectives you have

expressed earlier.”) followed by n-shot demonstrations of the target user’s previous conversations in

chronological order (Figure 1).
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For each user with more than n + 1 conversations, we implement a sliding-window approach to

maximize training sample efficiency. This method creates multiple training instances per user by shift-

ing the demonstrationwindow forward one conversation at a timewhile preserving temporal ordering.

For example, with a 3-shot configuration, conversations 1-3 serve as demonstrations for predicting

conversation 4, then conversations 2-4 for predicting conversation 5, and so on. This approach pre-

serves chronological integrity while increasing the available training samples.

The prompt structure follows a standardized format where each demonstration consists of a com-

plete discourse exchange (original post, intermediate replies, and the user’s response), with the final

prompt presenting only the conversation context without the target user’s reply. This methodology al-

lows themodel to learn fromauthentic user behavior patternswithout explicitly encoding assumptions

about which characteristics influence response generation.

To clearly signal what each user wrote - especially inmulti-turn conversations - we prefix eachmes-

sage with a greater-than sign followed by the username and content, as shown in Prompt 2:

>{username1}: {Tweet}
>{username2}: {Reply1}

Prompt 2: Intra Prompt Conversation Format

When a user refers to the person being simulated (the LLM), we replace the actual username with

@YOU. If the user being simulated has already replied in a previous stage of the conversation, the user-

name is replaced by >YOU:. The assistant component of each prompt consists solely of the target reply.

These conversation-reply pairs are tokenized using LLM-specific chat templates. Since these mod-

els are trained on human-assistant dialogue patterns, the conversation serves as the user input while

the reply represents the model’s expected output. This process conditions the LLM by presenting the

dialogue history as if it had already generated those responses during prior turns.

A.1.3 Cross-User Evaluation Design

The sliding window approach leads to an imbalanced distribution in which a small number of ”power

users” contribute disproportionately to the training samples. To prevent the model from primarily

learning patterns from these frequent users, we first remove all users above the 90th percentile in con-

versation frequency, as these extremely active users would otherwise dominate the training distribu-

tion and potentially skewmodel behavior toward their specific discourse patterns.

We then bin the remaining users according to their conversation frequency using density-based
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clustering to create strata of similarly active users. From each stratum, we randomly assign 15% of the

users to the test set, ensuring that the test distribution maintains the same proportion of user activity

levels as the training set.

This user-based split methodology has two key advantages: it maintains ecological validity by pre-

serving realistic activity distributions in both training and test sets, and it directly tests the model’s

ability to extract generalizable discourse patterns rather thanmemorizing user-specific idiosyncrasies.

For our experimental framework, we further divide the training data into two equal parts. The first

part serves for initial SFT adaptation, while the second part is used exclusively for preference learning,

making the approach less prone to overfitting and encouraging robust generalization.

A.1.4 Dataset Size and Construction

The dataset construction process generated varying amounts of examples in different n-shot configu-

rations:

– 3-shot configuration: 13,852 training examples, 1,000 evaluation examples

– 5-shot configuration: 9,067 training examples, 1,000 evaluation examples

– 7-shot configuration: 5,984 training examples, 690 evaluation examples

A.2 Metrics

A.2.1 Embedding Distance

We measure the semantic similarity between the responses generated by the model and the actual

human responses through the cosine distance between their embedding representations, using gte-

Qwen2-1.5B-instruct with discourse-specific prompting (Prompt 1) (Li et al., 2023). This metric cap-

tures alignment in both communicative intent and stylistic characteristics, with lower distances (rang-

ing from 0 to 2) indicating closer approximation of the human user’s response pattern.

A.2.2 ROUGE-1

We employ ROUGE-1 (unigram overlap) to quantify the lexical similarity between the generated and

actual human responses (Lin, 2004). This surface-level metric captures the model’s adoption of user-

specific vocabulary, hashtag usage, and other explicit linguistic features common in social media dis-

course. We implement the metric using the rouge-score library and report F1 scores.
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A.2.3 Perplexity

We calculate token-level perplexity as an information-theoretic measure of how well each model pre-

dicts the actual human responses given the conversation history. Perplexity directly measures the

model’s probability assignment to ground-truth responses, providing insight into its internal alignment

with human discourse patterns. Lower perplexity indicates that the model assigns a higher probabil-

ity to the tokens actually produced by users. Our implementation creates a custom attention mask

that isolates the calculation to only the target response, preventing context tokens from influencing

the measurement.

A.2.4 Political Stance Consistency

To assess the political stance modeling capabilities we sample 30 random histories in the 5-shot for-

mat. We then append a made-up conversation asking for the ”take” on one of the following politically

charged topics: abortion, healthcare, LGBTQ rights, gun rights, immigration, and climate change, as

shown in Prompt 3:

>NilsSchwager: What's your take on {topic}?

Prompt 3: Probe for Political Stance on Controversial Topics

This pushes the model to generate a reply that reveals a political leaning. To assess the political

leaning, we insert the reply and the tweet (giving the LLM-as-a-Judge additional context) in the prompt,

as shown in Prompt 4. The LLM-as-a-Judge is tasked to determine the political leaning on a scale from

(1) strongly conservative to (5) strongly progressive/liberal. By enforcing structured output we guaran-

tee the output is automatically parsable.

We opt for Llama 3.1 70B (Grattafiori et al., 2024) as LLM-as-a-Judge model. We prompt the model

to compare the responses to typical conservative/liberal positions for its assessment, relying totally on

the model’s calibration. While there are more nuanced approaches, we would argue that in our case

this is the best approach, becausewe focus solely on the consistency across topics. Given the construct

political leaning is stable across the diverse topics within the judge we deem our approach sufficient.

For each testedmodelwe generate 10 replies and average them for each topic-history combination.

This results in 30profiles (histories)with 6 scores (topics). Wewould expect that awell calibratedmodel

detects a political leaning in the history and is able to reproduce it across the other topics, resulting in

constant scores and corresponding high value for Cronbach’s Alpha (Cronbach, 1951).
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Analyze this social media reply in the context of the conversation:
Original conversation: {last_conversation_content}

Reply: {synthetic_reply}

Evaluate the ideological leaning of this reply regarding
{target_topic} on a scale from 1-5:

1 = Strongly conservative position (supporting conservative
policies or opposing progressive policies)

2 = Moderately conservative position
3 = Neutral, moderate, or mixed ideological stance
4 = Moderately progressive/liberal position
5 = Strongly progressive/liberal position (supporting

progressive policies or opposing conservative policies)

Focus specifically on the underlying political ideology, not
writing style or tone. Consider how the views expressed align
with typical conservative versus progressive positions on
{target_topic}.

Please provide your evaluation in the following format (JSON-like):
"rating": "1|2|3|4|5"

Prompt 4: LLM-as-a-Judge Prompt for Political Stance Evaluation

A.2.5 Offensiveness Correlation

Using the TweetEval offensive content classifier, we analyze the correlation between offensive content

in conversationhistoriesandcorrespondingmodel-generated responses (Barbieri et al., 2020). Foreach

history we generate the reply ten times and average the ten corresponding offensiveness scores. By

averaging across ten runs we get a more robust score for each setting. We also calculate the offensive-

ness score from the replies in the history (the style the model is tasked to replicate) and then calculate

Pearson correlation coefficients (Pearson and Galton, 1895). This quantifies each model’s ability to re-

produce varying levels of sensitive content.

A.3 Model Selection

We employ Microsoft’s Phi-4-mini-instruct (3.8B parameters) as our foundation model for all experi-

ments (Abouelenin et al., 2025). This model achieves superior performance on the Open LLM Leader-

board1 among all models under 7B parameters (Fourrier et al., 2024). The parameter count constraint

was necessary to enable computationally efficient training and evaluation within our resource limita-

tions. Applying the same rationale,weopt forgte-Qwen2-1.5B-instruct (Li et al., 2023) asour embedding
1as of 29.04.2025
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model, which ranks second in the Massive Text Embedding Benchmark (Enevoldsen et al., 2025; Muen-

nighoff et al., 2022) among all models under 7B parameters that offer instruction retrieval 2.

A.4 Hyperparameters

Weemploy full-parameter trainingwithbfloat16 precision across all experiments, foregoingparameter-

efficient fine-tuning methods like LoRA or QLoRA to eliminate additional hyperparameter complexity.

All fine-tuning methods utilize the memory-efficient paged_adamw_8bit optimizer (Dettmers et al.,

2021) with consistent configurations. The maximum sequence lengths are adjusted proportionally to

the demonstration quantity: 512 tokens for 3-shot, 768 for 5-shot, and 1024 for 7-shot datasets.

For SFT, we used a learning rate of 2e-5 with a batch size of 8 and linear warm-up over 10% of the

training steps. All preference-basedapproaches (DPO,CPO,BCO,KTO)usea reduced learning rateof 1e-

6, maintaining a standardized effective batch size of 16 across methods through appropriate gradient

accumulation. Each preference learning approach trains for 3 epochs. These choices result from our

hyperparameter tuning comparing epochs and commonalities in the literature (Ethayarajh et al., 2024;

Rafailov et al., 2023; Jung et al., 2024).

2as of 29.04.2025 - leaving out multilingual-e5-large-instruct
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Appendix B Results

Approach 3-Shot 5-Shot 7-Shot

Base Model 0.5235 (± 0.0042) 0.4767 (± 0.003) 0.45 (± 0.0038)

Initial Fine-Tuning on Authentic Completions
SFT Completion Only 0.3935 (± 0.0031) 0.3895 (± 0.004) 0.3919 (± 0.0026)
SFT Full-Context 0.3906 (± 0.003) 0.3808 (± 0.0027) 0.3777 (± 0.0028)

Fine-Tuning on Synthetic Completions
SFT+BCO 0.3796 (± 0.0029) 0.377 (± 0.0031) 0.3776 (± 0.0048)
SFT+CPO 0.3868 (± 0.0026) 0.3782 (± 0.0038) 0.3847 (± 0.0047)
SFT+DPO 0.3771 (± 0.0023) 0.3731 (± 0.0031) 0.3765 (± 0.0053)
SFT+KTO 0.3806 (± 0.002) 0.3763 (± 0.0039) 0.3749 (± 0.0027)
SFT+SFT 0.3791 (± 0.0041) 0.3756 (± 0.0038) 0.3841 (± 0.0033)

Fine-Tuning on Authentic Completions (control)
SFT+BCO 0.3919 (± 0.0028) 0.3859 (± 0.0026) 0.3908 (± 0.0047)
SFT+CPO 0.3964 (± 0.0038) 0.3881 (± 0.0027) 0.3913 (± 0.0047)
SFT+DPO 0.3925 (± 0.0041) 0.3861 (± 0.0052) 0.3898 (± 0.0043)
SFT+KTO 0.3925 (± 0.0026) 0.3863 (± 0.0029) 0.3872 (± 0.004)
SFT+SFT 0.389 (± 0.0024) 0.3795 (± 0.0034) 0.3784 (± 0.0049)

Cosine Distance Comparison across Fine-Tuning Methods (Lower Values Indicate Better Performance).
Standard deviations shown in parentheses. Results averaged across 10 independent runs: 3-shot and
5-shot configurations based on 1000 test samples; 7-shot based on 690 samples. Best performance in
each column is highlighted in bold.
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Approach 3-Shot 5-Shot 7-Shot

Base Model 0.1287 (± 0.001) 0.1373 (± 0.0011) 0.1438 (± 0.0021)

Initial Fine-Tuning on Authentic Completions
SFT Completion Only 0.1987 (± 0.0015) 0.1996 (± 0.0028) 0.1943 (± 0.0022)
SFT Full-Context 0.1985 (± 0.0022) 0.2009 (± 0.0016) 0.1998 (± 0.0025)

Fine-Tuning on Synthetic Completions
SFT+BCO 0.2019 (± 0.0027) 0.2005 (± 0.0023) 0.1961 (± 0.0022)
SFT+CPO 0.1955 (± 0.0026) 0.197 (± 0.0027) 0.1939 (± 0.0028)
SFT+DPO 0.2038 (± 0.0019) 0.1956 (± 0.0021) 0.197 (± 0.0034)
SFT+KTO 0.2044 (± 0.0025) 0.2006 (± 0.0025) 0.1978 (± 0.0033)
SFT+SFT 0.2075 (± 0.0023) 0.2032 (± 0.0029) 0.1959 (± 0.0018)

Fine-Tuning on Authentic Completions (control)
SFT+BCO 0.1956 (± 0.0018) 0.1973 (± 0.0021) 0.1928 (± 0.0027)
SFT+CPO 0.1915 (± 0.0019) 0.1936 (± 0.003) 0.1926 (± 0.0029)
SFT+DPO 0.1952 (± 0.0043) 0.1976 (± 0.002) 0.1951 (± 0.0028)
SFT+KTO 0.1944 (± 0.0037) 0.1986 (± 0.0027) 0.1939 (± 0.0029)
SFT+SFT 0.2001 (± 0.0031) 0.1977 (± 0.0014) 0.1984 (± 0.0015)

ROUGE-1 Comparison across Fine-Tuning Methods (Higher Values Indicate Better Performance). Stan-
darddeviations shown inparentheses. Results averagedacross 10 independent runs: 3-shot and5-shot
configurationsbasedon1000 test samples; 7-shot basedon690 samples. Best performance in each col-
umn is highlighted in bold.

Approach 3-Shot 5-Shot 7-Shot

Base Model 5e15 7.9e14 4.04e12

Initial Fine-Tuning on Authentic Completions
SFT Completion Only 14.3111 14.3864 13.8682
SFT Full-Context 50.9115 51.9867 56.8716

Fine-Tuning on Synthetic Completions
SFT+BCO 15.2194 14.3925 13.9061
SFT+CPO 14.4378 14.4689 13.9335
SFT+DPO 14.4395 14.4338 13.8997
SFT+KTO 18.2191 18.5141 13.9058
SFT+SFT 17.072 16.0201 15.2657

Fine-Tuning on Authentic Completions (control)
SFT+BCO 14.2681 14.3303 13.815
SFT+CPO 14.3156 14.3938 13.8687
SFT+DPO 14.2573 14.335 13.8311
SFT+KTO 14.2519 14.3422 13.825
SFT+SFT 13.9889 13.9663 13.5245

Perplexity Results across Fine-Tuning Methods (Lower Values Indicate Better Performance). 3-shot and
5-shot configurations based on 1000 test samples; 7-shot based on 690 samples. Best performance in
each column is highlighted in bold.
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